Scale-invariance underlying the logistic equation and its social applications
نویسندگان
چکیده
منابع مشابه
Scale-invariance underlying the logistic equation and its social applications
On the basis of dynamical principles we derive the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and demonstrate that scaleinvariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie large ...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولChoptuik scaling and the scale invariance of Einstein’s equation
The relationship of Choptuik scaling to the scale invariance of Einstein’s equation is explored. Ordinary dynamical systems often have limit cycles: periodic orbits that are the asymptotic limit of generic solutions. We show how to separate Einstein’s equation into the dynamics of the overall scale and the dynamics of the “scale invariant” part of the metric. Periodicity of the scale invariant ...
متن کاملInformation Theory Consequences of the Scale-Invariance of Schröedinger's Equation
In this communication we show that Fisher’s information measure emerges as a direct consequence of the scale-invariance of Schröedinger’s equation. Interesting, well-known additional results are re-obtained as well, for whose derivation only (and this is the novelty) the scale invariance property is needed, without further ado.
متن کاملFUZZY LOGISTIC DIFFERENCE EQUATION
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2013
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2012.10.054